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Short Papers

Scattering at a Nonchiral–Chiral Interface
in a Coaxial Waveguide

Zhongxiang Shen and Robert H. MacPhie

Abstract—A formally exact full-wave solution is presented for the
problem of scattering at a nonchiral–chiral interface in a coaxial wave-
guide. The field components for the axisymmetric modes in a coaxial
chirowaveguide are initially obtained. A new orthogonality relation for
the modes is then proposed and used to find expansion coefficients for
the electromagnetic fields in the coaxial chirowaveguide. The scattering
matrix for the nonchiral–chiral dielectric discontinuity in a coaxial
waveguide is finally derived by enforcing the continuity conditions of the
tangential field components across the interface. Numerical results for the
reflection and transmission coefficients at the nonchiral–chiral interface
in a coaxial waveguide are presented.

Index Terms—Chiral material, mode-matching method, waveguide dis-
continuity.

I. INTRODUCTION

The notion of electromagnetic chirality, also known as optical
activity in the optical regime, has been recognized since the beginning
of the Nineteenth century. In the past few years, a considerable
amount of work was carried out to investigate its potential application
to problems in radiation and scattering and propagation in unbounded
and bounded media [1], [2]. This paper deals with the theoretical
analysis of reflection and transmission at a nonchiral–chiral interface
in a coaxial waveguide. Fig. 1 shows the side view of the structure
of the problem considered, whose analysis mainly involves the
characterization of a dielectric step discontinuity (nonchiral–chiral
interface) in a coaxial waveguide. The motivation behind this study
is the possibility of determining material parameters of chiral media
using a coaxial line. Using the coaxial line (rather than the parallel-
plate waveguide [3]) is more attainable from the point of view of
measurement.

II. M ODES IN A COAXIAL CHIROWAVEGUIDE

This section gives the electromagnetic-field expressions for ax-
isymmetric modes in a coaxial chirowaveguide. A new orthogonality
relation for these modes is also proposed.

A. Field Components

For time-harmonic electromagnetic fields withexp(j!t) depen-
dence, the basic constitutive relations for describing a chiral medium
are of the form

~D = � ~E � j� ~B (1a)
~H = � j� ~E + ~B=� (1b)

where�, �, and� are the permittivity, permeability, and chirality ad-
mittance of a chiral medium, respectively. A chirowaveguide consists
of a conventional cylindrical waveguide filled with a homogeneous
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Fig. 1. Geometry of the structure considered.

chiral medium characterized by (1). The theory of chirowaveguides
and propagation characteristics of their modes were investigated in
detail in the literature [2]–[5]. For the sake of completeness, we sum-
marize some of these results here. The transverse-field components
in chirowaveguides are related to the longitudinal components by the
following relations:

~et = aẑ �rtez � jbrtez + jcẑ �rthz + drthz (2a)

~ht = � j
c

�2c
ẑ �rtez �

d

�2c
rtez + aẑ �rthz � jbrthz (2b)

where

a =!��(k2 + �2)=�;

b =�(2!2�2�2 + k2 � �2)=�

c =!�(k2 � �2)=�

d =2�!2�2�=�

k2 =!2��

� =�4 � 2�2(2!2�2�2 + k2) + k4

�c = �=(�+ ��2):

The longitudinal field componentsez andhz can be expressed by

ez =(P+)2U+ + (P�)2U� (3a)

hz = j[(P+)2U+
� (P�)2U�]=�c (3b)

where

(P�)2 = (k�)2 � �2; k� = �!�� + k2 + !2�2�2

andU+ andU� are solutions of Helmholtz equation [4].
Now our attention turns to the electromagnetic-field expressions

and propagation constants of axisymmetric modes in a coaxial
chirowaveguide. It has been shown [2]–[5] that a chirowaveguide is
unable to support individual TE, TM, or TEM modes, that is to say, all
the modes existing in a chirowaveguide are hybrid. For the problem
considered in this paper, only axisymmetric modes can be excited in
both the conventional coaxial line (Guide I in Fig. 1) and the coaxial
chirowaveguide (Guide II) due to the symmetry of the structure and
the incident TEM mode in Guide I. For the axisymmetric modes in
a coaxial chirowaveguide withr and R being its inner and outer
radii, respectively, use of (2) and (3) is made to derive the following
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field-component expressions:

ez = P+[J0(P
+�) + Y0(P

+�)B+]

+ P�[J0(P
��)A� + Y0(P

��)B�] (4a)

hz = jP+[J0(P
+�) + Y0(P

+�)B+]=�c

� jP�[J0(P
��)A� + Y0(P

��)B�]=�c (4b)

e� = �j�[J 00(P
+�) + Y 0

0(P
+�)B+

+ J 00(P
��)A� + Y 0

0(P
��)B�] (4c)

h� = �[J 00(P
+�) + Y 0

0(P
+�)B+

� J 00(P
��)A�

� Y 0

0(P
��)B�]=�c (4d)

e� = �k+[J 00(P
+�) + Y 0

0(P
+�)B+]

+ k�[J 00(P
��)A� + Y 0

0(P
��)B�] (4e)

h� = k+[J 00(P
+�) + Y 0

0(P
+�)B+]=(j�c)

+ k�[J 00(P
��)A� + Y 0

0(P
��)B�]=(j�c) (4f)

whereJ0 and Y0 are the zeroth-order Bessel functions of the first
and second kind, respectively; the prime denotes the derivative of
Bessel functions with respect to their entire argument. From (4) and
the condition that tangential electric-field components must be zero
on the conductor surfaces, we can easily obtain the characteristic
equation for the propagation constant� of axisymmetric modes
in a coaxial chirowaveguide. It should be pointed out that for
(P�)2 < 0, J0(P��) andY0(P��) in (4) are, respectively, replaced
by I0(jP

�j�) andK0(jP
�j�) with I0 andK0 being the first and

second kind of modified Bessel functions of order 0. After finding
the propagation constant for a specific mode, the corresponding
expressions forA�, B�, andB+ can be readily found.

B. Mode Orthogonality

It is well known that the mode orthogonality for a conventional
metallic waveguide filled with homogeneous nonchiral materials has
the form [6]

s

~etn � ~etmds =
s

~htn � ~htmds = 0; for n 6= m (5)

where the subscriptt denotes the tangential component. However, for
a waveguide filled with inhomogeneous nonchiral materials, (5) does
not hold true in a general sense; a more general mode orthogonality
exists [6] as follows:

s

~etn � ~htm � ẑds = 0; for n 6= m (6a)

which, in the cylindrical coordinates(�; �), will reduce to

s

(e�nh�m � e�nh�m)ds = 0; for n 6= m: (6b)

Relation (6) is very useful for the analysis of waveguide disconti-
nuities involving inhomogeneous dielectrics. For chirowaveguides,
Engheta and Pelet [7] derived an orthogonality relation for their
modes as follows:

s

(~en � ~hm � ~em � ~hn) � ẑds = 0 (7)

which holds true for waveguides filled with both lossless and lossy
chiral materials. Unfortunately, relation (7) is of no use for modal
expansions. It is shown in [8] that another similar relation involving
complex conjugates for lossless chirowaveguides is not suitable for
modal expansions in the power sense either. In the following, we
introduce a new orthogonality for the axisymmetric modes in a
coaxial chirowaveguide. Recalling the field expressions in (4) and
employing the technique of reversing the propagation direction used

Fig. 2. Dispersion diagram of the first three axisymmetric modes in a coaxial
chirowaveguide (R = 3r, �r = �r = 1, � = 1mS).

in [6], one can show that the axisymmetric modes in the coaxial
chirowaveguide satisfy the following orthogonal relation:

s

(e�nh�m + h�ne�m)ds = 0; for n 6= m: (8)

This orthogonality relation will be used in Section III to express the
electromagnetic-field components by the sum of their modal functions
and to derive the scattering matrix of a nonchiral–chiral dielectric
discontinuity in a coaxial waveguide.

III. T HE SCATTERING MATRIX

The structure of the problem in which we are interested is shown
in Fig. 1, where the nonchiral–chiral interface is assumed to be at
the plane ofz = 0. For the conventional coaxial waveguide (Fig. 1,
Guide I), the transverse components of electromagnetic fields can be
expressed by

~E1t =

N

m=1

[Ai
1m exp(�j�1mz) +Ar

1m exp(j�1mz)]~e1tm (9a)

~H1t =

N

m=1

[Ai
1m exp(�j�1mz)� Ar

1m exp(j�1mz)]Y1mẑ � ~e1tm

(9b)

where expressions for the normalized electric field~e1tm are available
in [9]; Y1m and �1m are the mode admittance and propagation
constant, respectively, andAi

1m and Ar
1m are the incident and

reflected modal amplitudes of modem.
The transverse-field components in the coaxial chirowaveguide

(Fig. 1, Guide II) are of the form

E2� =

N

n=1

[Ar
2n exp(�j�2nz)�Ai

2n exp(j�2nz)]e2�n (10a)

E2� =

N

n=1

[Ar
2n exp(�j�2nz) +Ai

2n exp(j�2nz)]e2�n (10b)

H2� =

N

n=1

[Ar
2n exp(�j�2nz)�Ai

2n exp(j�2nz)]h2�n (10c)

H2� =

N

n=1

[Ar
2n exp(�j�2nz) +Ai

2n exp(j�2nz)]h2�n (10d)

where expressions fore2�n, e2�n, h2�n, andh2�n are given by (4).
Enforcement of the conditions that the tangential-field components

must be continuous across the interface (z = 0) and application of
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Fig. 3. Magnitude and phase of the reflection coefficient� of the dominant TEM mode incident on a nonchiral–chiral interface in a coaxial waveguide
(k0r = 0:5, R = 3r, �r = �r = 1, �r1 = 1).

the orthogonality relation (8) for the coaxial Guide II, and (5) for the
conventional coaxial Guide I, result in

D(Ar

2 �A
i
2) =MhY

h
1 (�A

i
1h +A

r
1h) +Me(A

i
1e +A

r
1e)

(11a)

A
i
1h +A

r
1h =M

T
h (A

r
2 +A

i
2) (11b)

Y
e
1(A

i
1e �A

r
1e) =M

T
e (A

r
2 +A

i
2) (11c)

where D is a diagonal matrix, the superscript “T ” denotes the
transpose operation, andMh andMe are defined as

Mhnm =
s

e2�ne1�m ds Menm =
s

h2�ne1�m ds

and

A1 =
A1h

A1e
Y1 =

Y1h 0
0 Y1e

:

From (11), one can derive the following scattering submatrices:

S11 =
I�Yhh �Yhe

�Yeh �(Yee +Y
e
1)

�1
�I�Yhh Yhe

�Yeh (Yee �Y
e
1)

(12a)

S21 = D
�1([MhY

h
1 Me ]S11 + [�MhY

h
1 Me ])

(12b)

S12 =
I�Yhh �Yhe

�Yeh �(Yee +Y
e
1)

�1
M

T
h

M
T
e

(12c)

S22 = I+D
�1[MhY

h
1 Me ]S12 (12d)

where

Yhh =M
T
hD

�1
MhY

h
1

Yhe =M
T
hD

�1
Me

Yeh =M
T
eD

�1
MhY

h
1

Yee =M
T
eD

�1
Me:

After obtaining the scattering matrix of the dielectric step discon-
tinuity in a coaxial waveguide, we can then confront the problem
of a chiral sheath of lengtht in a coaxial waveguide. The structure
illustrated in Fig. 1 can be regarded as a cascaded connection of two
junctions and the generalized scattering-matrix technique [10] may
be invoked to determine the overall scattering matrix.

IV. NUMERICAL RESULTS

In this section, we present some numerical results for the reflection
and transmission coefficients of a wave incident on a nonchiral–chiral
interface in a coaxial waveguide. In our computations, the TEM mode
is the unique propagating mode in the nonchiral coaxial waveguide.

First, we give some computed results for the first three axisym-
metric modes in a coaxial chirowaveguide. The dominant mode
of the coaxial chirowaveguide is termedEH00, which corresponds
to the TEM mode in a conventional coaxial waveguide; the first
two higher order modes are then designated asEH01 and HE01

corresponding to the modesTM01 and TE01 in a coaxial line,
respectively. The dispersion diagram for these three modes is shown
in Fig. 2, where the vertical axis represents(�=k0)2, which gives
the relevant information forEH01 andHE01 when they are cutoff.
The cutoff frequency of the dominantEH00 mode is zero, while the
cutoff frequencies ofEH01 andHE01 modes are, respectively, at
about0:224c=r and0:251c=r, with c being the velocity of light.

The formulation described in the previous sections and the written
computer codes for the scattering matrix of the nonchiral–chiral
interface in a coaxial waveguide are verified by considering the
reduced case when� = 0, along with considering power conser-
vation. When� = 0, the problem considered reduces to a very
simple one—a dielectric discontinuity in a coaxial waveguide whose
solution is easily obtained. The reflection coefficient of a TEM
mode incident on such an interface of two nonchiral dielectrics is
� = (1� �r=�r1)=(1 + �r=�r1); no higher order modes can be
excited by this discontinuity. Our results for the simplified case agree
with this analytical solution. The sum of powers of the reflected wave
and the transmitted wave is always equal to that of the incident wave
within the tolerance of numerical errors.

The magnitude and phase of the refection coefficient of the domi-
nant TEM mode incident on a nonchiral–chiral interface in a coaxial
waveguide are shown in Fig. 3 for different permittivities of the chiral
material. From Fig. 3, it can be seen that the chirality admittance
does have significant influence on the reflection coefficient, both in
magnitude and in phase. The effect of the chirality becomes weak
when the relative permittivity of the chiral material increases as
expected.

Fig. 4 presents the variation of magnitude and phase of the
reflection coefficient of a TEM wave incident on a chiral sheath
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Fig. 4. Magnitude and phase of the reflection coefficient� of the dominant TEM mode incident on a chiral sheath in a coaxial waveguide (k0r = 0:5,
R = 3r, �r = �r = 1, �r1 = 1, t = r).

Fig. 5. Frequency characteristics of the reflection and transmission coefficients for a chiral sheath layer of lengtht in a coaxial waveguide (r = 1:5 mm,
R = 3r, �r1 = �r = 1, t = 10 mm, �r = 3:8).

of length t in a coaxial waveguide as functions of the chirality
admittance�. Both the permittivity and the chirality admittance
of the chiral material have an effect on the reflection and
transmission coefficients, which implies that one can measure
both the relative permittivity and chirality of the chiral material
by measuring both the reflection and transmission coefficients
simultaneously. The frequency characteristics of the reflection
and transmission coefficients of a chiral sheath in a coaxial line
are shown in Fig. 5, where the curves for nonchiral (� = 0)
sheath are also plotted for comparison. It is obvious that the
effect of the dielectric sheath is negligible when the frequency
is very low. When frequency increases, the variation of both the
reflection and the transmission-coefficient amplitudes resembles
an oscillating curve with no reflection occurring whent =

n�=2, here n is an integer. The chirality admittance of the
material changes the locations of the maxima and minima of the
curves.
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An Integrated Doppler-Radar Transceiver Front End
Using Two FET Active Antennas

Zhengping Ding and Kai Chang

Abstract—An integrated X-band Doppler-radar transceiver front end
has been developed. This front end consists of two adjacently spaced field-
effect transistor (FET) active antennas, with one of them being biased to
oscillate as its transmitter and the other being biased not to oscillate, but
to act as its mixer. This design has the advantage of lower noise at low
Doppler frequencies as compared to a self-oscillating mixer scheme. The
circuit can be used in low-power Doppler-radar systems to detect slow-
moving objects such as pedestrians, intruders, automobiles, etc., with high
sensitivity.

Index Terms—Active antennas, Doppler radar, integrated antennas,
transceivers.

I. INTRODUCTION

In recent years, efforts have been made in searching for ap-
propriate active antenna designs for seemingly promising spatial
power-combining technology [1]–[6]. Mixers built directly on an-
tennas have also been reported [7], [8]. These innovations are very
attractive in realizing compact radio-frequency (RF) front ends in
portable communications and radar systems. Active antennas used
for communications have been reported in literature [9]. On the other
hand, active antennas used for radar systems have not been paid
sufficient attention.

To probe into potential applications of active antennas in low-
power Doppler-radar systems, a compactX-band Doppler-radar
transceiver front end was built and tested. In this design, two field-
effect transistor (FET) active antennas were adjacently integrated on
one substrate. One FET active antenna is biased to oscillate and
radiate as the transmitter, while the other is biased not to oscillate,
but to serve as the mixer/receiver. The local oscillator (LO) signal of
the mixer is from the oscillating active antenna via mutual coupling.
The RF signal is reflected from any moving object in the beam of the
active antennas. Compared to the self-oscillating mixer scheme, this
design demonstrated much lower noise at low Doppler frequencies
ranging from hertz to kilohertz order. Therefore, it can be used in
Doppler-radar applications for the detection of slow-moving objects.

II. CIRCUIT DESIGN AND OPERATION

The integrated RF front end was fabricated with two Hewlett-
Packard ATF-26 836 FET’s on an RT/Duroid 5880 dielectric substrate
of "r = 2:20 and thicknessh = 0:787 mm, as shown in Fig. 1. The
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Fig. 1. Circuit design (all dimensions are in millimeters).

design frequency was chosen at 10 GHz. The design of the FET
active antenna is similar to the one reported earlier with Gunn diodes
[6]. The active antenna uses a ring stabilized FET oscillator coupled
to a slot antenna. The bias circuits and FET’s are hidden behind
the metallization. This active antenna design has the advantages of
low spurious radiation, low cross polarization, ease of integration,
etc. The circumference of the 67-
 microstrip ring resonator was
designed such that their first resonance is at the design frequency.
The length of the 0.5-mm-wide slot antenna was designed such that
their first resonance is also at the design frequency. The reason that
the first resonance of the microstrip ring and the slot antenna was
designed to be at the same frequency is to avoid possible mode-
jumping phenomena due to multiple resonance of the circuits [10].
The drains of the FET’s were connected to the resonant microstrip
rings. Their sources were grounded through via holes. Their gates
were terminated with an RF reactanceXt, which was realized by
an open-circuited microstrip stub. Both FET active antennas were
designed identically. One FET active antenna (FET 1) was biased to
oscillate/radiate, while the other (FET 2) to mix/receive. The two FET
active antennas are closely spaced such that certain LO power can be
coupled from the oscillating/radiating active antenna to the mixing
one. This makes the pair of active antennas a monostatic Doppler-
radar transceiver front end. Doppler signals are extracted from the
drain of the FET in the mixer/receiver circuit. A shield plate was
introduced a certain distance behind the circuits to avoid any back
radiation.

The dimensions of the 67-
 microstrip ring and the 0.5-mm-wide
slot antenna were determined by means of EEsof’s LineCalc software.
The dimensions of the open-circuited microstrip stub in the circuit
was determined by means of the small-signal approach for the design
of the FET oscillators [11].

Fig. 2 shows the schematic equivalent circuits of this active
antenna, including both the oscillator/transmitter circuit and the
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